reverse-goertzel/reverse_goertzel.py

51 lines
1.5 KiB
Python

import math
import matplotlib.pyplot as plt
import numpy as np
def goertzel_sinusoid(freq, duration, sample_rate, amplitude):
n = int(duration * sample_rate)
omega = (2.0 * math.pi * freq) / sample_rate
coeff = 2.0 * math.cos(omega)
# Initialize state variables for cos wave
# You can use 1.0 for q1 and q2 for a cos wave with slightly larger amplitude and a phase shift of 1/2 a sample
# q1 previous sample in sinusoid
q1 = math.cos(omega * (n - 1)) # use math.sin(omega * (n-1)) for sin wave
# q2 previous previous sample
q2 = math.cos(omega * (n - 2)) # use math.sin(omega * (n-2)) for sin wave
result = np.zeros(n)
for i in range(n):
sample = coeff * q1 - q2
q2 = q1
q1 = sample
result[i] = sample * amplitude
return result
def sinusoid(n, cycles=1, phase=0):
result = []
for i in range(phase, n+phase):
sample = math.cos(2.0 * cycles * math.pi * (i/n))
result.append(sample)
return result
def main():
samp_per_cycle = 512
cycles = 3
len = cycles * samp_per_cycle
signal = goertzel_sinusoid(1, cycles, samp_per_cycle, 1)
reference = np.array(sinusoid(len, cycles))
error = reference - signal
print("max amplitude:", signal.max())
print("max error:", error.max())
x = np.array(range(0, len))
plt.plot(x, signal)
plt.plot(x, reference)
plt.plot(x, error)
#plt.plot(x, error*100000000000)
plt.show()
if __name__ == "__main__":
main()